MUSCLE CONTRACTION

MUSCLE CONTRACTION

Muscle contraction is the activation of tension-generating sites within muscle fibers. In physiology, muscle contraction does not mean muscle shortening because muscle tension can be produced without changes in muscle length such as holding a heavy book or a dumbbell at the same position. The termination of muscle contraction is followed by muscle relaxation, which is a return of the muscle fibers to their low tension-generating state.

TYPES OF MUSCLE CONTRACTION:
• Isometric
• Isotonic

Isometric contraction involves the development of force by an increase in intramuscular tension without any change in length of the muscle.


Isotonic contraction increases intramuscular tension accompanied by change in length of the muscle. It may either shorten or lengthen the muscle.
Isotonic contraction
In isotonic contraction, the tension in the muscle remains constant despite a change in muscle length. This occurs when a muscle's force of contraction matches the total load on the muscle.

Concentric contraction
In concentric contraction, muscle tension is sufficient to overcome the load, and the muscle shortens as it contracts. This occurs when the force generated by the muscle exceeds the load opposing its contraction.
During a concentric contraction, a muscle is stimulated to contract according to the sliding filament theory. This occurs throughout the length of the muscle, generating a force at the origin and insertion, causing the muscle to shorten and changing the angle of the joint. In relation to the elbow, a concentric contraction of the biceps would cause the arm to bend at the elbow as the hand moved from the leg to the shoulder (a biceps curl). A concentric contraction of the triceps would change the angle of the joint in the opposite direction, straightening the arm and moving the hand towards the leg.

Eccentric contraction
In eccentric contraction, the tension generated is insufficient to overcome the external load on the muscle and the muscle fibers lengthen as they contract. Rather than working to pull a joint in the direction of the muscle contraction, the muscle acts to decelerate the joint at the end of a movement or otherwise control the repositioning of a load. This can occur involuntarily (e.g., when attempting to move a weight too heavy for the muscle to lift) or voluntarily (e.g., when the muscle is 'smoothing out' a movement). Over the short-term, strength training involving both eccentric and concentric contractions appear to increase muscular strength more than training with concentric contractions alone. However, exercise-induced muscle damage is also greater during lengthening contractions.
During an eccentric contraction of the biceps muscle, the elbow starts the movement while bent and then straightens as the hand moves away from the shoulder. During an eccentric contraction of the triceps muscle, the elbow starts the movement straight and then bends as the hand moves towards the shoulder. Desmin,titin, and other z-line proteins are involved in eccentric contractions, but their mechanism is poorly understood in comparison to cross-bridge cycling in concentric contractions.
Though the muscle is doing a negative amount of mechanical work, (work is being done on the muscle), chemical energy (in fatglucose or ATP) is nevertheless consumed, although less than would be consumed during a concentric contraction of the same force. For example, one expends more energy going up a flight of stairs than going down the same flight.
Muscles undergoing heavy eccentric loading suffer greater damage when overloaded (such as during muscle building or strength training exercise) as compared to concentric loading. When eccentric contractions are used in weight training, they are normally called negatives. During a concentric contraction, muscle fibers slide across each other, pulling the Z-lines together. During an eccentric contraction, the filaments slide past each other the opposite way, though the actual movement of the myosin heads during an eccentric contraction is not known. Exercise featuring a heavy eccentric load can actually support a greater weight (muscles are approximately 40% stronger during eccentric contractions than during concentric contractions) and also results in greater muscular damage and delayed onset muscle soreness one to two days after training. Exercise that incorporates both eccentric and concentric muscular contractions (i.e., involving a strong contraction and a controlled lowering of the weight) can produce greater gains in strength than concentric contractions alone. While unaccustomed heavy eccentric contractions can easily lead to overtraining, moderate training may confer protection against injury.
Eccentric contractions in movement
Eccentric contractions normally occur as a braking force in opposition to a concentric contraction to protect joints from damage. During virtually any routine movement, eccentric contractions assist in keeping motions smooth, but can also slow rapid movements such as a punch or throw. Part of training for rapid movements such as pitching during baseball involves reducing eccentric braking allowing a greater power to be developed throughout the movement.
Eccentric contractions are being researched for their ability to speed rehabilitation of weak or injured tendons. Achilles tendinitis  and patellar tendonitis  (also known as jumper's knee or patellar tendonosis) have been shown to benefit from high-load eccentric contractions.

Reference:
  • TEXT BOOK OF BIOMECHANICS AND EXERCISE THERAPY (Dr. C.NAGAVANI, M.P.T (Neuro) Assistant professor Susruta college of physiotherapy Dilshuknagar, Hyderabad.
  • https://en.wikipedia.org/wiki/Muscle_contraction

মন্তব্যসমূহ

একটি মন্তব্য পোস্ট করুন